

September, 2023 Rapid Shutdown Solutions NEP CONFIDENTIAL

NEP RSD

Þ

www.northernep.com

Who is NEP

Northern Electric Power Technology Inc (NEP) was founded in the USA and has a 13 year history of developing advanced solar power conversion solutions. We have shipped of our microinverter and rapid shutdown MLPE products to customers in over 35 countries.

NEP has a relentless focus on safety, reliability, cost efficiency and customer focused innovation.

NEP is legally formulated in America as a Benefit Corporation striving for human and shareholder value.

Silicon Valley, CA headquarters, advanced engineering, exec team, finance Operations and product development in Asia

Experienced Leadership Team

Ed, Jing, Fan; American and majority owners of NEP

Ed Heacox Board Member/ Co-Founder eheacox@northernep.com

Ed brings 30 years of power electronics business development to NEP with history at GE Power Systems, Emerson Electric and Celestica Power Systems. He was VP-GM at Advanced Energy and created their inverter business unit, reaching #1 share in America. Most recently Ed co-created CPS America building the business and team to a market leading position. He has a Standford MS Management graduate degress.

Jing Wang Chairman, Co-Founder jwang@northernep.com

Jing is the original creator of NEP and the lead executive for customers, applications engineering and company operations. Jing's 30+ year career in power electronics provides the foundation for NEP including GE R & D in New York and Schneider/Xantrex in Asia and North America. He has a PH.D from the University of British Columbia.

Fan Wang CTO, Co-Founder fwang@northernep.com

Fan leads NEP product technology development in the USA and Asia pringing 10 years of Motorola R&D experience. Fan participated in 37 US patents and is an inverter and data-communications expert for NEP. Fan has a PH.D from Purdue Univerity.

Jack Han VP, Co-Founder hanjiazhi@northernep.com

A long-time power electronics executive driving business development at industrial automation and renewable energy industries, and partnerships for NEP globally. Most recently Mr. Han has been a key executive for Chint Power Systems and prior role included business development for

Strong Cross-Functional USA Team

Est. 20 Staff in the USA

Jake LeVitre

General Manager of North America Jake has experience in distribution knowledge in data structures. Jake strategies to optimize supply chain

Felicia Yang

Customer Operations Ma Felicia has worked in cust in these areas, makes her

Wendy Yang

Customer Operations Ass Wendy has worked in logi years. Her experience and mission.

Jacob Benzaquer

Product Manager Jacob has over 3 years of experie about helping customers transitio products that make it easier for p

John "Gino" Espino

Director of Commerical Sales John is well-versed with many years development, strategic planning, an energy industry.

Ations Ass ked in logi rience and

George Vuduc

Technical Support Lead George has extensive experience UPS companies. Also, he has spe George was instrumental in buildi engineers.

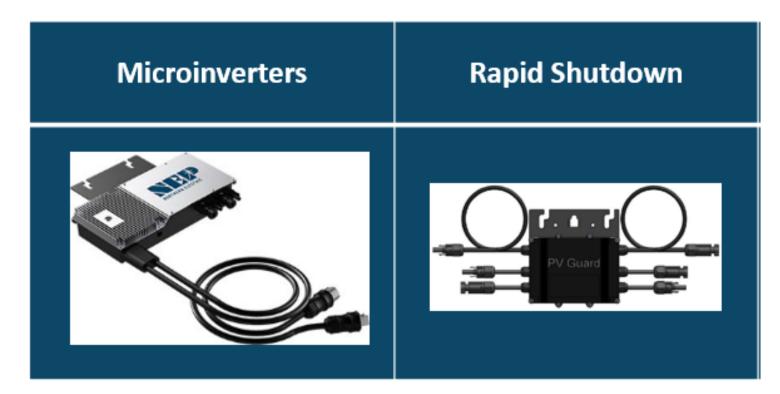
Mark Hudspeth

Regional Sales Manager South/Southeast

Mark has been in the Solar industry operations, project management, ar their business by providing the best

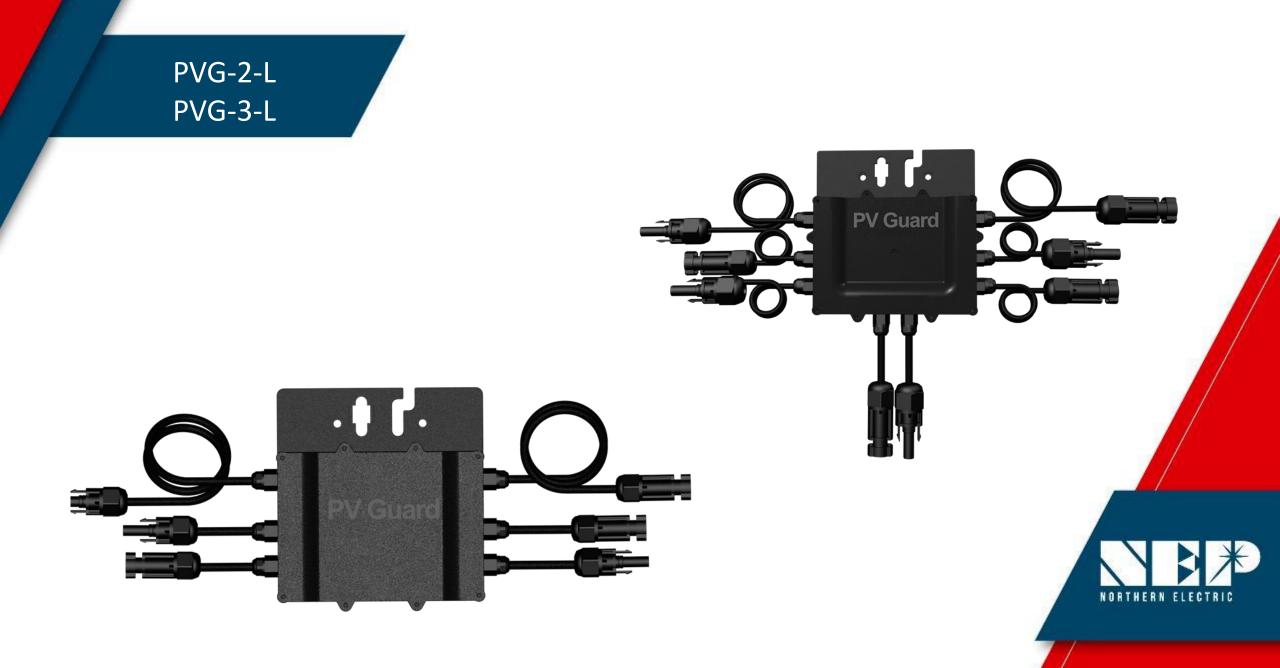
Sarah Li

Inside Sales & Marketing Sarah has built up a wealt cellular phone stores in h promotions makes her a

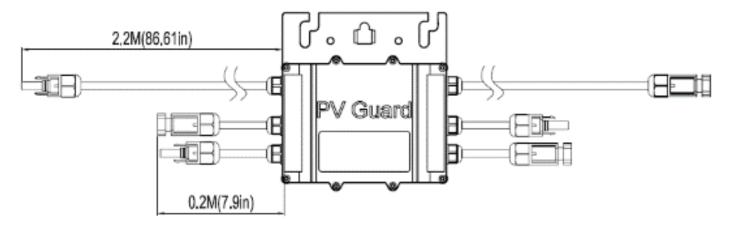


Zach Kiebler

Technical Support Lead EC Zach has 10 years of residential s excited to work with installers and RSD monitoring. In his downtime,



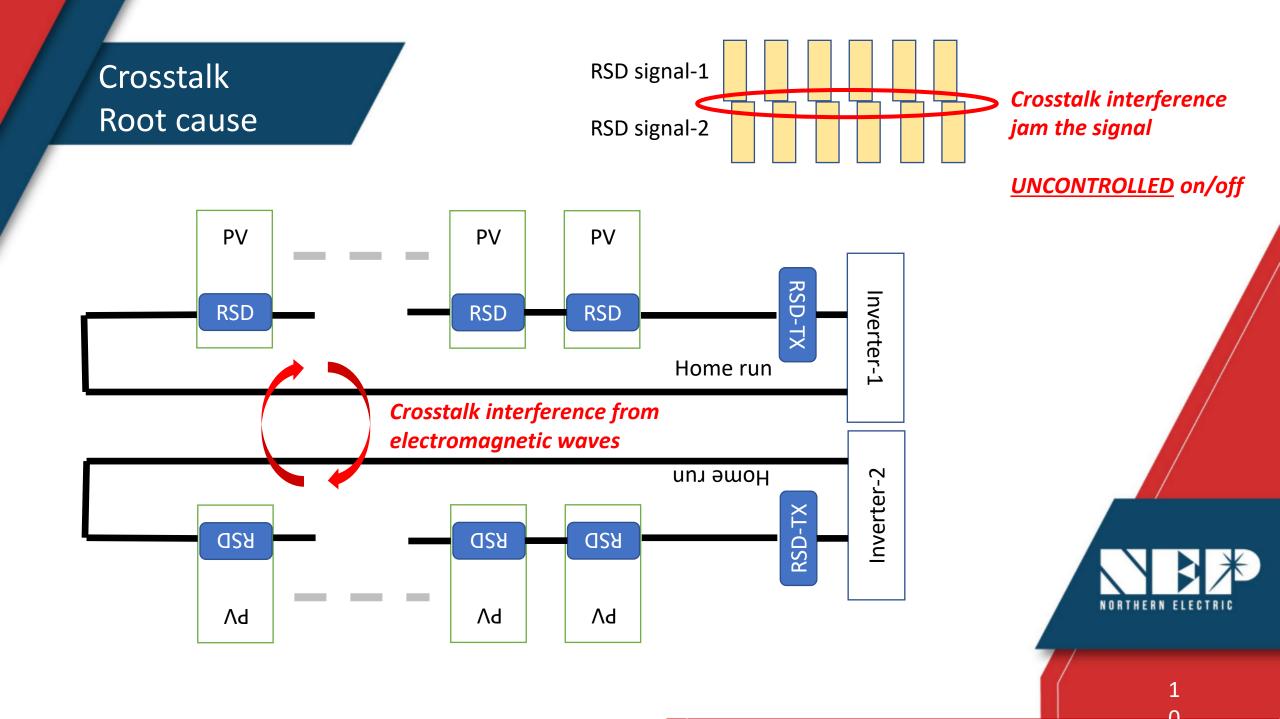
MLPE over 10 years

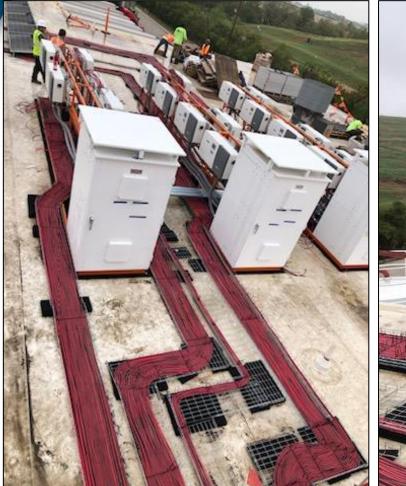


Residential Single and Dual Data monitoring Global Residential, Commercial Single, Dual, Triple Data monitoring USA and emerging markets

Specification eg. PVG-2-L

INPUT(DC)	Max DC Open Circuit Voltage per Input (Vdc)	90					
INFOT(DC)	Max DC Current per input (Adc)	15 / 20					
OUTPUT(DC)	Maximum Output Voltage (Vdc)	Voc * n (n=1/2/3/4)					
SYSTEM	Maximum System Voltage (Vdc)	1500					
MECHANICS	PV Cable	12AWG					
	PV Connectors	Mc4 (Contact NEP for other connectors options)					
	Size (not including PV cable)	5.12' x 4.73' x 1. 14' (PVG-1) 5.90' x 5.71' x 1. 00' (PVG-2)					
	Protection Degree	NEMA 6					
	Operating Ambient Temperature	-40°C+85°C					
	Mounting Method	Rail, Frame (option)					
SIGNAL	Communications	DC Power Line					
CERTIFICATION	Product Safety Compliance	UL 1741 CSA C22.2 No. 107.1 NEC 2014/2017 690.12 Canada CEC 2015 64-218					


Comparisons


	NEP RSD	Other RSD		
Communication	Two way PLC	One way		
Crosstalk Avoidance	YES	NO		
I-V Curve Test	YES	VERY DIFFICULT		
Remote Trouble Shooting/Monitoring	YES	NO		

PVG vs Optimizer

	NEP PVG	Optimizer	
Communication	Two-way	Two-way	
Module level monitoring	Yes	Yes	
Component count	less	more	
Mean Time Between Failure	better	worse	
Over heating	almost no heat	Yes	
Efficiency	> 99.8%	low	
Reliability (topology complexity)	high	low	
Module Level MPPT Function	Νο	Yes	
Price	much lower	high	
System flexibility	Yes	No	

Cross-Talk Challenge

Multi-Strings In Conduits

Challenging Application

Retrofit to NEP

Crosstalk Hazard

Our peers RSD has severe cross talk issue

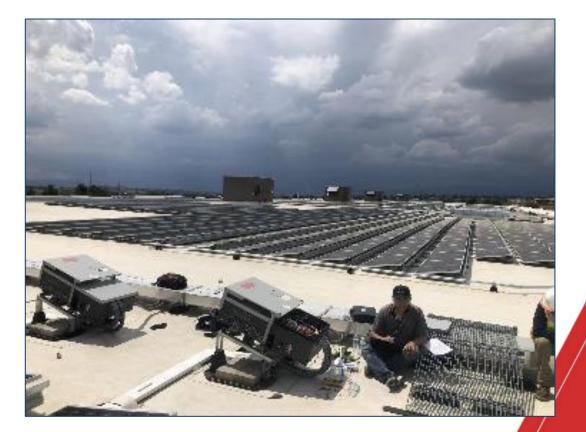
=> Crosstalk interference can cause UNCONTROLLED on/off of PV panels => Damaged RSD, Lower/unbalanced output => force installers to conduit one set of cables per inverter => many more steel pipes, much more space and much more expensive

Can RSD signal be synchronized?

=> Additional cable to connect all RSD transmitters requires more labors
=> Sync control signal delay due to transmission and processing
=> Most importantly, phase delay due to inductance of long PV cable can counter impact the synchronization of the transmitters

CONCLUSION: Simple 1-bit RSD signal cannot eliminate crosstalk

Crosstalk Avoidance


Unique protocol for crosstalk avoidance

Allows installers to put multiple sets of inverter cables into one conduit

Save space, save time and save money

Proprietary advanced signal processing and error control coding technique

No additional hardware. NEP 2-way communications between transmitter and RSD devices ensures a firm data/control 'handshake'

Retrofit to NEP Duke Energy Site Colorado

US patent pending

IV Curve Trace Mode

Unique function for IV Curve tracing

PVG switch can be set as open or closed

This function allows third party curve

tracer measurements

This function can save commissioning

time

Demonstration at AGT Site Jointly with SEAWARD Florida

US Patent Coverage

IV curve trace test

RSD System Device Level Monitoring

Cross talk avoidance

		US011							
	ited States Patent g et al.	(10) Patent(45) Date of		US 11,133,777 B2 t: Sep. 28, 2021					
(54) SOL A	AR ARRAY COMMUNICATIONS	(56)	Referen	ices Cited					
(71) Appli	cants:Fan Wang, San Marino, CA (US); Jing Wang, Palo Alto, CA (US)	U.S. 5.327.892 A		DOCUMENTS Nakamura					
(72) Invent	tors: Fan Wang, San Marino, CA (US); Jing Wang, Palo Alto, CA (US)	8,274,172 B2 8,653,689 B2 9,112,379 B2	9/2012 2/2014 8/2015	Hadar Rozenboim Sella H01L 31/02021					
(*) Notice	e: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.	9,524,832 B2 9,991,717 B1 10,720,878 B2 2004/0041665 A1 2004/0135676 A1	3/2004	Rowe Ehlmann					
(21) Appl.	No.: 17/024,563	2011/0261027 A1 2013/0009483 A1 2013/0194706 A1	10/2011 1/2013						
(22) Elled.	S 17 2020	2015/0028602 A1		Makhota					

Mounting

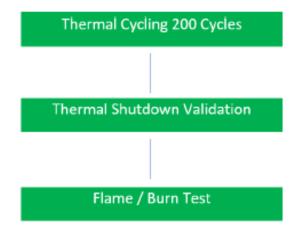
Rail or PV Frame(Clip) Mount

Fail Safe

PVEL test report is available

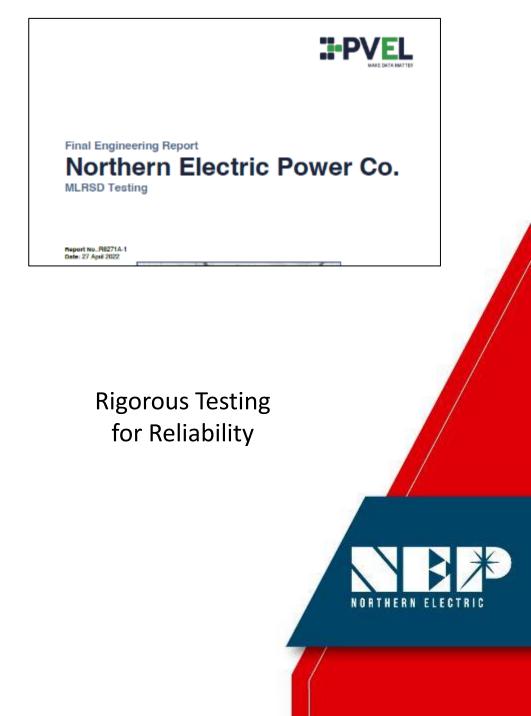
Extra protection for heat dissipation and protection over the plastic case

NORTHERN


An RSD was subjected to a localized flame in order to observe the RSD's response to a flame. Throughout the test, the RSD continued to operate even while the plastic enclosure of the RSD was burning.

Upon removal the of the flame source, the plastic enclosure quickly stopped burning.

Third Party Evaluation


2 Test Plan Overview

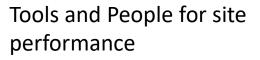
This report outlines the TC200 reliability test and thermal shutdown validation test performed on the NEP PVG-2-L MLRSD. The testing sequence aims to validate the MLRSD's performance over the reliability and validation tests to better understand operational advantages, while providing design feedback and supporting data sets on design and performance deficiencies.

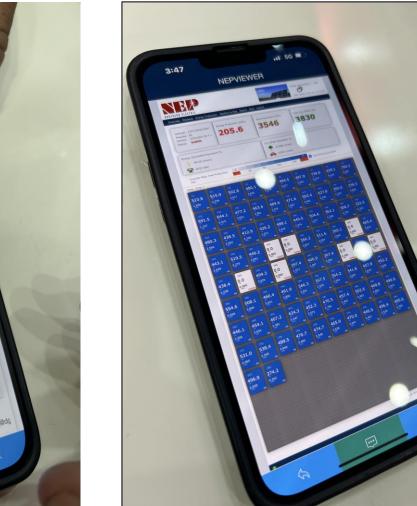
Figure 2-1: Test plan process diagram

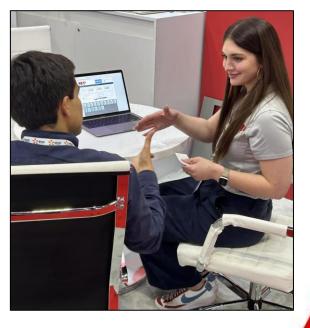
This evaluation focuses on a series of indoor (laboratory) tests to monitor the RSDs' capability to remain operational throughout the thermal cycling accelerated age testing profile as well as to validate the RSDs' ability to shut down upon an over temperature event. An explanation of each test is provided along with a description of the setup, equipment used to evaluate the results, and a short analysis of the inverter's performance.

PVG Field Data

	121	-	- 100	751				
41 145.4	[2] 391.4	[4] 378.4	(4) 396.0	[5] 210.5				
278	1,110	1,270	L,LOS	9,571	2			
[10]	[9] 212.2	(4) 161.3	[7]	[6]				
178.1	0.520	0,224	238.9 1,202	175.8 9,595				
(LLI)	(12)	[13]	[14]	[45]				
407.7	121.4	435.4 1,290	370.0 L.126	194.9 9,675				
[20]	[19]	[14]	[17]	[14]				
383.2 1,198	423.7 1,245	335.0 1,169	155.4	188.4				
[21]	(22] 388.7	[22]	1941	(25)	[26]			
289.3	0,653	227.6 0,538	210.7 0.416	421.6 1,274	326.5 0,967			
[22]	[22]	Carl	[20] 354.1	[29]	[28]	(27)		
171.0 9,452	321.6 1,049	333.2 9,961	354.1	221.5 9,248	371.0 9,975	167.5		
[24]	[26]	[26]	[277]	[26]	[20]	[40]		
168.7	374.4	445.9	365.6	404.3	366.8	419.2		
9,515 ,	1,050		-		-	1,593	-	
[47] 162.5	[46] 348.0	(45) 359.9	[44] 412.5	(49) 435.2	(42) 430.5	[41] 175.1		
Q,527	1,517	0,666	1:455	1,450	L.594	1,227		
[46]	[49]	[\$0] 402.9	(51) 380.1	(\$2) 408.8	(51) 349.6	(54) 357.4		
244.7 4,845	52.1 9.011	1,277	1,479	1,202	1.582	1,364		
	(60)	[99]	[54]	[57]	[36]	[55]		
419.8	393.1	461.6	409.6	365.5	432.6	379.1		
585	1,345	1,457			1.383 .			
(62) 374.3	(62) 422.8	[64] 367.4	(65) 395.1	[64] 422.2	(67) 312.0	(66) 339.3	(69) 373.7	
Lau L	L.447	L.542	1,229	L,652	0,647	4,642	1,149	
	[74]	[75]	1741	[72]	[72]	[71]	[70]	1
301.8	361.8 9,690	186.4 9,492	363.9 9,681	171.0	273.2	313.4	301.8 9,702	
10			1					1
262.9	(79) 397.3	(60) 361.8	(81) 381.4	(42) 367.7	184.0	405.2	(05) 393.6	
1.101	9,624	0,978	1,000	1,057	- <u>11</u> 29	L ,125	diam.	
(92) 231.2	[92] 333.9	[91]	[90] 375.2	[09]	(04) 416.9	(87) 379.1	(#4] 376.5	
1.160	1,001	172.7	1,151	341.2	4,276	7,100	1,026	
DH1	[95]	[94]		[94]	-		[101]	
415.7	171.8	380.0	(97) 344.7	394.4	(99] 276,9	324.8	192.1	
1,126	0,228	9,615	L.025	1,002	0,522	Q,851	9,225	
	[108] 221.1	[107]	[105]	[105]	(104) 435.8	[103]	(102) 438.6	
	0,773	362.4	352.7	330.4	1.103	271.7	1,294	


PVG-2 Field Data - Temperature

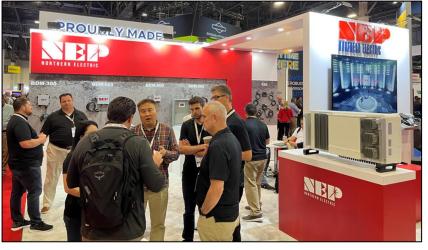

То	day Hour Da	y Month	1 Year	Repo	rt Hist	ory					
	From:	To: 20221	004 Mo	odule: 7	✓ Plc_id	: 0X1102	EDF0 V	/iew Dov	vnload Clear		
	Timestamp	Power (W)	Vdc-0	Vdc-1	Vdc-2	Vdc-3	A-DC (A)	TEMP (°C)	E-Today (kWh)	Status	
	2022-10-04 14:47	511.73	34.0	35.1	-	-	7.41	49	2.843	0	
	2022-10-04 14:48	511.73	34.0	35.1	-	-	7.41	49	2.843	0	
	2022-10-04 14:49	511.73	34.0	35.1	-	-	7.41	49	2.843	0	
	2022-10-04 14:50	501.22	34.0	34.7	-	-	7.30	50	2.896	0	
	2022-10-04 14:51	501.22	34.0	34.7	-	-	7.30	50	2.896	0	
	2022-10-04 14:52	501.22	34.0	34.7	-		7.30	50	2.896	0	
	2022-10-04 14:53	501.22	34.0	34.7	-	-	7.30	50	2.896	0	
	2022-10-04 14:54	501.22	34.0	34.7	-	-	7.30	50	2.896	0	
	2022-10-04 14:55	501.22	34.0	34.7	-	-	7.30	50	2.896	0	
	2022-10-04 14:56	493.67	34.0	34.7	-	-	7.19	50	2.946	0	
	2022-10-04 14:57	493.67	34.0	34.7	-	-	7.19	50	2.946	0	10
	2022-10-04 14:58	493 67	34.0	34.7			7 1 9	50	2 946	0	


NORTHERN

- Panel Level monitoring
- Each panel real-time voltage
- String current
- Real-time Temperature
- Alert

Site and PV Data

NORTHERN ELECTRIC

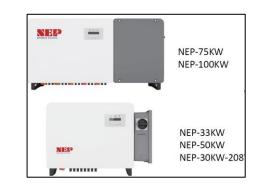

NEP CONFIDENTIAL

People you can Count On

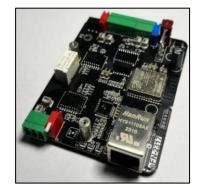
NORTHERN ELECTRIC

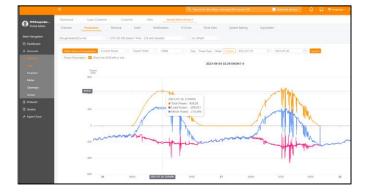
Challenge Us !

Supplements


Supplements

See Also


NEPTUNE – 3-phase inverters


https://northernep.com/products/3-phase-inverters/

Galaxy – Data-comm for inverters and RSD

https://northernep.com/wp-content/uploads/2023/09/NEP-NEPTUNE-Galaxy-Data-Comms-Solution-Sept-2023.pdf

