

Who is NEP

Northern Electric Power Technology Inc (NEP) was founded in the USA and has a 14 year history of developing advanced solar power conversion solutions. We have shipped of our microinverter and rapid shutdown MLPE products to customers in over 35 countries.

NEP has a relentless focus on safety, reliability, cost efficiency and customer focused innovation.

NEP is legally formulated in America as a Benefit Corporation striving for human and shareholder value.

Silicon Valley, CA headquarters, advanced engineering, exec team, finance Operations and product development in Asia

MLPE for 12 years

Microinverters

Rapid Shutdown

Residential
Single, Dual and Quad
Data monitoring
Global

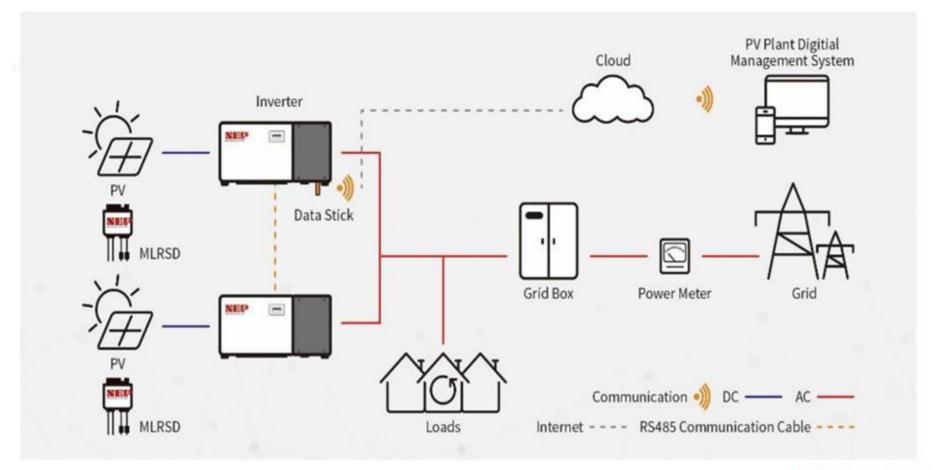
Residential, Commercial Single, Dual, Triple Data monitoring USA and emerging markets

See Also

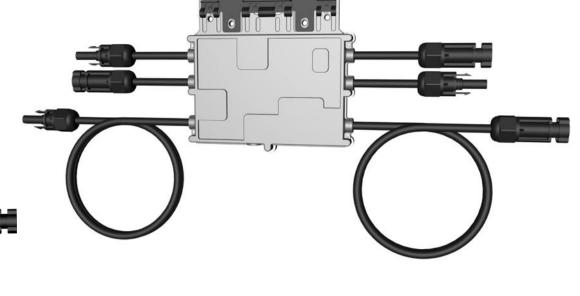
NEPTUNE – 3-phase inverters

https://northernep.com/products/3-phase-inverters/

Galaxy – Data-comm for inverters and RSD


https://northernep.com/wp-content/uploads/2023/09/NEP-NEPTUNE-Galaxy-Data-Comms-Solution-Sept-2023.pdf

Complete RSD + Inverter + Data Solution... All from NEP



PVG-2-L PVG-3-L

NEP RSD's work with NEP and NON-NEP inverters

"PVG-O" provides the transmitter and gateway for NON-NEP inverters

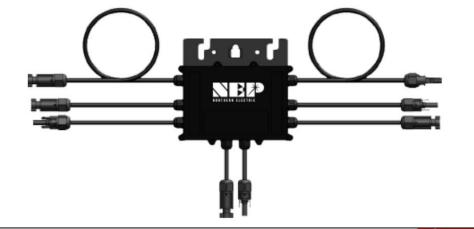
Counting on NEP

Bankability... on the bank

Safety... on the hospital

Reliability everywhere

Rapid Shutdown Solution - Data-sheet PVG-2, PVG-3


Features:

- •Module level rapid shutdown: dual (2) and triple (3) modules
- •Module level monitoring for commissioning, service diagnostics
- •1-minute PV data granularity for precise performance assessment
- •Cellular, Wifi and Ethernet connectivity options
- •Over temperature protection (auto-RSD function)
- •PVRSS certified with multiple inverters and as independent system
- •Zero cross talk interference through patented signaling design
- Optional customized cable/connector harness
- Staubli MC4 standard connectors
- •IV Curve Trace Test mode for efficient commissioning
- String voltage test tool available
- •Rail or module frame mount (optional PV mounting clip available)
- Multiple US patents

PV-Guard, Panel Level Devices	PVG-2 -L		PVG-3-L	
Input/Output				
Input: Max DC Open Circuit Voltage per Input	90Vdc			
Input: Max DC Current per Input	15/20 A			
Output: Max Output Voltage	Voc(module)*2	Voc(module)*3		
System Voltage Maximum	1500Vdc			
Mechanical				
PV Cable	0.2m PV(2), 2.2m Homeruns (2)	12 AWG	0.2m PV, 2.2m PV(2), 3.5m Homeruns (2)	
PV Connectors	MC4 Staubli (Custom configurations available)			
Size (PVG body)	5.9' x 5.7' x 1.0' (inches)			
Protection Degree	NEMA 6			
Operating Ambient Temperature	-40C - +85C			
Mounting Method	Rail via supplier MLPE hardware, PV Frame with optional NEP mounting clip			
Certifications	PVRSS Intertek, UL1741, CSA C22.2 No. 107.1, NEC 2017,2020 690.12, Canada CE 2015 64-218			
RSD Data Signal	Two-way, PLC Communications between PVG's and Transmitter			

Gateway Data C	ommunications			
PVG-O	Enclosure with BDG-256 Gateway, PVG-C Transmitter	Used for full PV and PVG data access		
PVG-M	Enclosure with BDG-256 Gateway, no Transmitter	Used for data and when transmitter resides in the inverter		
Data Period	5 years data, website and smart phone application support included			
Internet Connectivity; 3 methods for connecting the NEP Gateway to the Internet				
a. Ethernet	Standard hard-wire connection to the NEP BDG-256 Gateway			
b. Wifi	Standard Wifi connection to the NEP BDG-256 Gateway			
c. Cellular	Optional cellular modem with USA sim card, includes 5 year data plan			
Power Supply	Power input 100-277Vac, 200mA, 50/60Hz	Power needed for Gateway and Transmitter		
Transformer	Optional; for 480Vac to 277Vac	Used if only 480Vac is available, no neutral configuration		
Enclosure Size	15.79' x 11.8' x 6.7'			
Protection	IP65			
Certifications	PVRSS, Intertek UL1741			

20Amp is With Metal enclosure

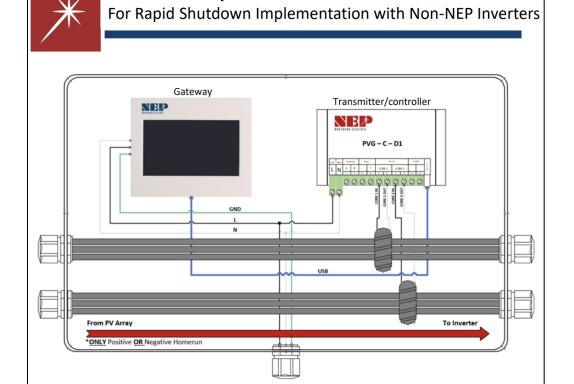
PVG-O Gateway + Transmitter Enclosure

For Rapid Shutdown Implementation with Non-NEP Inverters

Features:

- NEP Rapid Shutdown Transmitter/Controller
- NEP Gateway installed
- Outdoor IP65 enclosure
- PLC Data communications system with two CT's
- Data collection from RSD devices (to Gateway)
- RSD activation and control via transmitters
- Two cores for more DC conductor capacity
- · One PVG-O per inverter, recommended
- For C&I and Residential applications
- 4 units per carton, 54 units per pallet

NEP Part Number; NC0076 Product Name = PVG-O-D



Transmitter enclosure for NON-NEP Inverters

PVG-O Gateway + Transmitter Enclosure

Power Supply			
100-480 Vac.200mA, 50/60 HZ			
Maximum System Voltage			
1500 V			
Mechanicals			
Size	15.79' x11.8' x 6.7'		
Protection Degree	IP65		
Operating Temperature	-20°C-+85°C		
	Monitoring		
	Module Level with BDG-256		

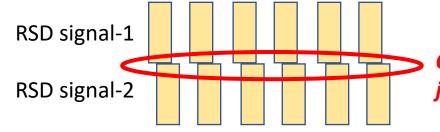
Optional transformer is necessary for applications not having 100-277Vac available to power the gateway and transmitter. E.g., In case of a 480Vac inverter with no neutral. The NEP step down transformer can be installed in the PVG-O enclosure. NEP Part Number = XFMR-480/277/240

Revision: March 1, 2024

(note: "PVG-C" label refers to the controller inside)

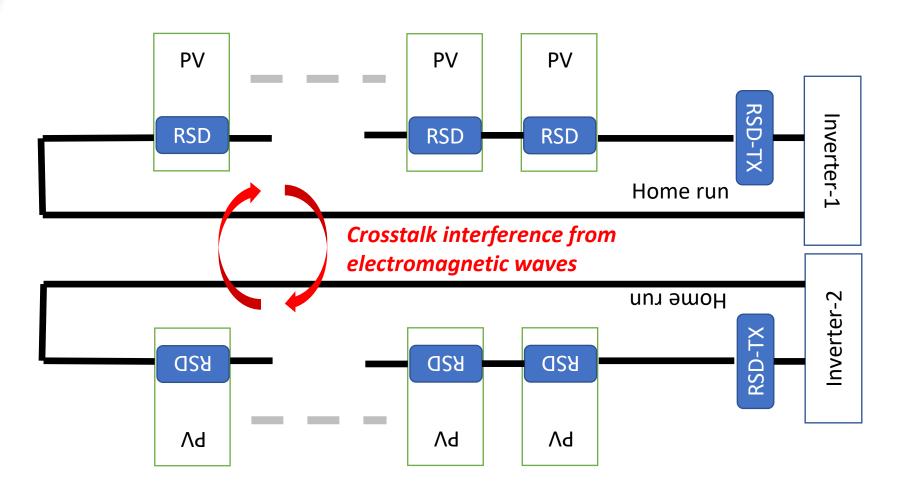
NEP RSD Comparisons

	NEP RSD	Other RSD		
Communication	Two way PLC	One way		
Crosstalk Avoidance	YES	NO		
I-V Curve Test	YES	VERY DIFFICULT		
Remote Trouble Shooting/Monitoring	YES	NO		


PVG vs Optimizer

NEP RSD has more features, less hassle

	NEP PVG	Optimizer
Communication	Two-way	Two-way
Module level monitoring	Yes	Yes
Component count	less	more
Mean Time Between Failure	better	worse
Over heating	almost no heat	Yes
Efficiency	> 99.8%	low
Reliability (topology complexity)	high	low
Module Level MPPT Function	No	Yes
Price	much lower	high
System flexibility	Yes	No

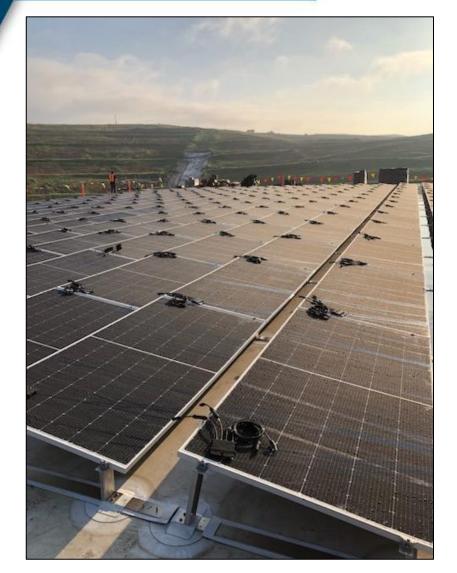


Crosstalk Root cause

Crosstalk interference jam the signal

UNCONTROLLED on/off

Cross-Talk Challenge



Retrofit to NEP Is underway

Texas

Retrofit to NEP

Crosstalk Hazard

Peers RSD's have severe cross talk issues

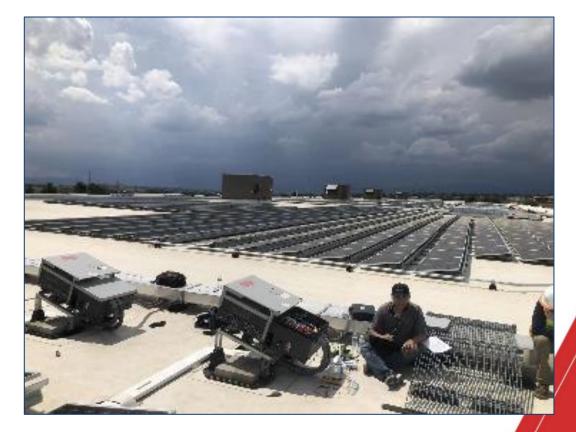
- => Crosstalk interference can cause UNCONTROLLED on/off of PV panels
 - => Damaged RSD, Lower/unbalanced output
- => force installers to conduit one set of cables per inverter
- => many more steel pipes, much more space and much more expensive

Can RSD signal be synchronized?

- => Additional cable to connect all RSD transmitters requires more labors
- => Sync control signal delay due to transmission and processing
- => Importantly, phase delay due to inductance of long PV cable can counter impact the synchronization of the transmitters

CONCLUSION: 1-bit RSD signal cannot eliminate crosstalk

Crosstalk Avoidance


Unique protocol for crosstalk avoidance

Allows installers to put multiple sets of inverter cables into one conduit

Save space, save time and save money

Proprietary advanced signal processing and error control coding technique

No additional hardware. NEP 2-way communications between transmitter and RSD devices ensures a firm data/control 'handshake'

Retrofit to NEP
Duke Energy Site
Colorado

IV Curve Trace Mode

Unique function for IV Curve tracing

PVG switch can be set as open or closed

This function allows third party curve

tracer measurements

This function can save commissioning

time

Demonstration at AGT Site

Jointly with SEAWARD

Florida

US Patent Coverage

IV curve trace test

RSD System Device Level Monitoring

Cross talk avoidance

(12)	Wang et al.		(45) Date of Patent: Sep. 28, 2021				
(54)	SOLAR A	RRAY COMMUNICATIONS	(56)		Referen	nces Cited	
(71)	Applicants	:Fan Wang, San Marino, CA (US); Jing Wang, Palo Alto, CA (US)				DOCUMENTS	
(72)	Inventors:	Fan Wang, San Marino, CA (US); Jing Wang, Palo Alto, CA (US)	5,327,892 8,274,172 8,653,689 9,112,379 9,524,832	B2 B2 B2*	9/2012 2/2014	Rozenboim Sella H01L 31/02021	
(*)	Notice:	Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.	9,991,717 10,720,878 2004/0041665 2004/0135676	B1 B2 A1	6/2018 7/2020 3/2004	Rowe Ehlmann	
(21)	Appl. No.:	17/024,563	2011/0261027 2013/0009483 2013/0194706	A1	1/2013	Lee Kawate Har-Shai	
(22)	PH-4.	C 17 2020	2015/0028602	A.1	1/2015	Makhata	

Mounting

Rail or PV Frame(Clip) Mount

Fail Safe

Extra protection for heat dissipation and protection over the plastic case

In 2024, NEP started shipping 20Amp metal enclosure RSD's

An RSD was subjected to a localized flame in order to observe the RSD's response to a flame. Throughout the test, the RSD continued to operate even while the plastic enclosure of the RSD was burning.

Upon removal the of the flame source, the plastic enclosure quickly stopped burning.

Third Party Evaluation

2 Test Plan Overview

This report outlines the TC200 reliability test and thermal shutdown validation test performed on the NEP PVG-2-L MLRSD. The testing sequence aims to validate the MLRSD's performance over the reliability and validation tests to better understand operational advantages, while providing design feedback and supporting data sets on design and performance deficiencies.

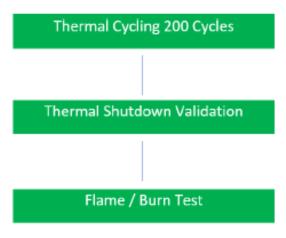
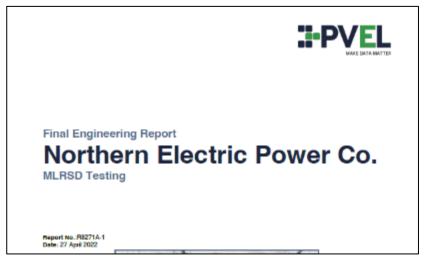
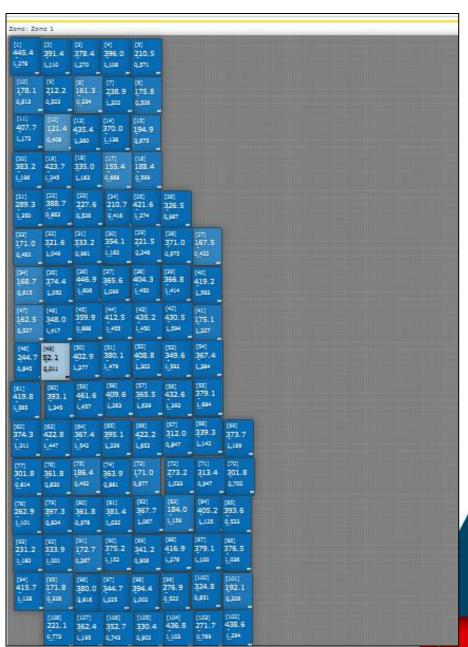



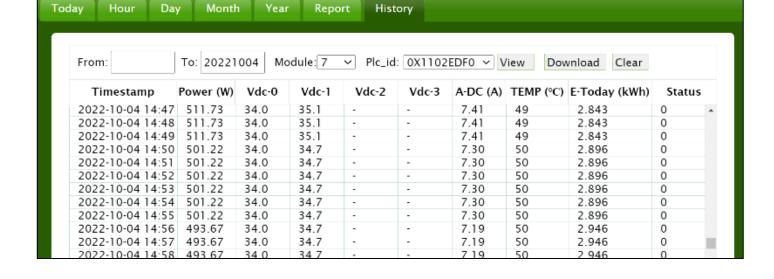
Figure 2-1: Test plan process diagram

This evaluation focuses on a series of indoor (laboratory) tests to monitor the RSDs' capability to remain operational throughout the thermal cycling accelerated age testing profile as well as to validate the RSDs' ability to shut down upon an over temperature event. An explanation of each test is provided along with a description of the setup, equipment used to evaluate the results, and a short analysis of the inverter's performance.

PVEL test report is available

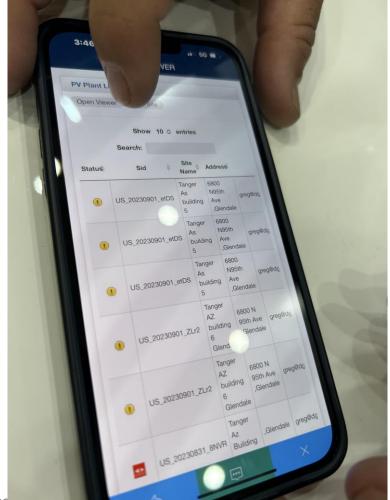

Rigorous Testing for Reliability

PV data granularity

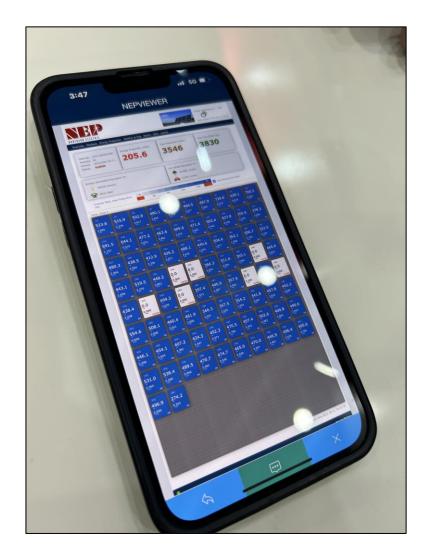


To assure correct installation, day #1
To assure proper function over time
For site troubleshooting; strings, panels, RSD,
...shade, connectors, inverters etc.

PVG-2 Field Data - Temperature



Panel Level monitoring


- Each panel real-time voltage
- String current
- Real-time Temperature
- Alert
- 1 minute data granularity

Site and PV Data

Tools and People for site performance

NEP CONFIDENTIAL

Mystery Challenge?

What is going on in this photo?

Clue: those are not NEP RSD's in the NEP cartons!



People you can Count On

Supplements

Supplements

